Ergothioneine attenuates varicocele‐induced testicular damage by upregulating HSP90AA1 in rats

Author:

Chen Qi12,Zhou Ranran12,Yang Cheng12,Jiang Qijun12,Yuan Haoyu12,Qiu Xin12,Tian Hu12,Zhou Junhao12,Liu Cundong12ORCID

Affiliation:

1. Department of Urology The Third Affiliated Hospital of Southern Medical University Guangzhou China

2. The Third School of Clinical Medicine Southern Medical University Guangzhou China

Abstract

AbstractThis study investigates the therapeutic effect and the underlying mechanisms of ergothioneine (EGT) on the testicular damage caused by varicocele (VC) in vivo, in vitro, and in silico. This preclinical study combines a series of biological experiments and network pharmacology analyses. A total of 18 Sprague Dawley (SD) male rats were randomly and averagely divided into three groups: the sham‐operated, VC model, and VC model with EGT treatment (VC + EGT) groups. The left renal vein of the VC model and the VC + EGT groups were half‐ligated for 4 weeks. Meanwhile, the VC + EGT group was intragastrically administrated with EGT (10 mg/kg). GC1 and GC2 cells were exposed to H2O2 with or without EGT treatment to re‐verify the conclusion. The structure disorder of seminiferous tubules ameliorated the apoptosis decrease in the VC rats receiving EGT. EGT can also increase the sperm quality of the VC model rats (p < 0.05). The exposure to H2O2 decreased proliferation and increased apoptosis of GC1 and GC2 cells, which was revisable by adding EGT to the plates (p < 0.05). The network pharmacology and molecular docking were conducted to explore the potential targets of EGT in VC, and HSP90AA1 was identified as the pivotal gene, which was validated by western blot, immunohistochemistry, and RT‐qPCR both in vivo and in vitro (p < 0.05). Overall, EGT attenuates the testicular injury in the VC model both in vivo and in vitro by potentially potentiating the expression of HSP90AA1.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3