MicroCT analysis unveils the role of inflatable female genitalia and male tibial complex in the genital coupling in the spider genus Aysha (Anyphaenidae, Araneae)

Author:

Poy Dante1ORCID,Piacentini Luis Norberto1,Michalik Peter2,Lin Shou‐Wang2,Ramírez Martín Javier1

Affiliation:

1. Division of Arachnology Museo Argentino de Ciencias Naturales—CONICET Buenos Aires Argentina

2. Zoologisches Institut und Museum Universität Greifswald Greifswald Germany

Abstract

AbstractSperm transfer in spiders is achieved by copulatory organs on the male pedipalps (i.e., copulatory bulbs), which can be simple or a complex set of sclerites and membranes. During copulation, these sclerites can be used to anchor in corresponding structures in the female genitalia by means of hydraulic pressure. In the most diverse group of Entelegynae spiders, the retrolateral tibial apophysis clade, the female role in the coupling of genitalia is considered rather passive, as conformational changes of the female genital plate (i.e., the epigyne) during copulation are scarce. Here, we reconstruct the genital mechanics of two closely related species belonging to the Aysha prospera group (Anyphaenidae) that bear a membranous, wrinkled epigyne and male pedipalps with complex tibial structures. By using microcomputed tomography data of a cryofixed mating pair, we reveal that most of the epigyne remains greatly inflated during genital coupling, and that the male tibial structures are coupled to the epigyne by the inflation of a tibial hematodocha. We propose that a turgent female vulva is a prerequisite for the genital coupling, which could implicate a female control device, and that the structures from the male copulatory bulb have been functionally replaced by tibial structures in these species. Furthermore, we show that the conspicuous median apophysis is maintained in spite of being functionally redundant, posing a puzzling situation.

Publisher

Wiley

Subject

Developmental Biology,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3