Heat and mass transfer under MHD mixed convection in a four‐sided lid‐driven square cavity

Author:

Patel Arvind1,Kumar Manoj2,Bagai Shobha3

Affiliation:

1. Department of Mathematics, Faculty of Mathematical Sciences University of Delhi Delhi India

2. Department of Mathematics, Ramjas College University of Delhi Delhi India

3. Cluster Innovation Centre University of Delhi Delhi India

Abstract

AbstractThis paper investigates the heat and mass transfer under magnetohydrodynamic mixed convection flow of a binary gas mixture in a four‐sided lid‐driven square cavity. The enclosure's left wall is sinusoidally heated and acts as a source term, while the right wall functions as a sink. The cavity's horizontal walls are adiabatic and impermeable to mass transfer. The governing equations under Boussinesq approximation and stream function‐vorticity formulation are solved using the alternating‐direction‐implicit scheme, a finite‐difference method. The numerical scheme's consistency and stability are demonstrated using the matrix method. The MATLAB code is written, validated against some existing studies, and used to perform numerical simulations. The numerical solutions are graphically examined by visualizing the streamline, isotherm, and concentration contours for nondimensional parameters, such as Hartmann number , heat absorption or generation coefficient , Richardson number , and buoyancy ratio . The magnetic field modifies the temperature and concentration distribution in the cavity, depending on the convection mode. The magnetic field forces the fluid to stagnate in different regions of the cavity, depending on the mode of convection. It was found that the difference between the maximum and minimum temperature and concentration at the cavity's midpoint increases up to 13 and 10 times, respectively, in the natural convection compared with the forced convection. The average Nusselt number on the vertical walls of the cavity is maximum in natural convection in the absence of a magnetic field but reaches a minimum value at in forced and mixed convection. The average Sherwood number on the cavity's vertical walls decreases with the magnetic field in mixed and natural convection.

Funder

University of Delhi

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3