Family with sequence similarity 111 member B contributes to tumor growth and metastasis by mediating cell proliferation, invasion, and EMT via transforming acidic coiled‐coil protein 3/PI3K/AKT signaling pathway in hepatocellular carcinoma

Author:

Yang Yaobo1,Yan Zhaoyong1,Jiao Yang1,Yang Weihao1,Cui Qi1,Chen Sipan1ORCID

Affiliation:

1. Department of Interventional Radiology Shaanxi Provincial People's Hospital Xi'an Shaanxi China

Abstract

AbstractAs a complex systemic disease, primary liver cancer ranks third in death rate for solid tumors worldwide. Family with sequence similarity 111 member B (FAM111B), which was found to be aberrantly mutated in multiple cancers, is a candidate oncogene. We aimed to determine the function and mechanism of FAM111B in hepatocellular carcinoma (HCC). The expression of FAM111B was evaluated in HCC tissues, adjacent tissues, HCC cell lines. The impact of FAM111B on proliferation, invasion, apoptosis and EMT of HCC cells were detected by CCK‐8, Transwell, flow cytometry and Western blot assays. The relationship between FAM111B and transforming acidic coiled‐coil protein 3 (TACC3) was assessed by CoIP and Immunofluorescence (IF) staining assays. The effect of FAM111B on tumor growth was detected by using xenograft model of nude mice. The expression of FAM111B was upregulated in HCC tissues and cell lines, and the prognosis of HCC patients was worse in the high FAM111B expression group, and its expression level was associated with the TNM stage of HCC. FAM111B silencing inhibited HCC cell proliferation and invasion, EMT and induced apoptosis. Besides, TACC3 served as an interactor for FAM111B, which could enhance TACC3 expression, thus activing PI3K/AKT pathway. Rescue experiments revealed that elevated of TACC3 restored the inhibitory effect of FAM111B overexpression on the cell functions via PI3K/AKT pathway. In vivo, FAM111B inhibition hampered tumor growth and metastasis of HCC. This study highlighted a key player of FAM111B in modulating the malignant biological progression of HCC via TACC3/PI3K/AKT signaling pathway, displaying a potential therapeutic target for HCC.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3