Event‐triggered bipartite consensus for multiagent systems with general linear dynamics: An integral‐type event‐triggered control

Author:

Chung Nhan‐Phu1,Trinh Thanh‐Son2,Choi Woocheol3ORCID

Affiliation:

1. Institute of Applied Mathematics University of Economics Ho Chi Minh City Vietnam

2. Faculty of Information Technology Industrial University of Ho Chi Minh City Ho Chi Minh City Vietnam

3. Department of Mathematics Sungkyunkwan University Suwon Republic of Korea

Abstract

AbstractWe fill a gap in the proofs in the previous works (Wu X, Mu, X. Int J. Robust Nonlin Control. 2020;30:3753Ű3772; Zhang Z, Lunze J, Wang L. Int J Control. 2020;93:1005‐1014; Zhang Z, Wang L. J Robust Nonlin Control. 2018;28:4175Ű4187; Dai, M‐Z, Zhang C, Leung H, Dong P, Li B. IEEE Trans Syst, Man, Cybern: Syst. doi:10.1109/TSMC.2021.3119670) for the consensus using the integral‐based event‐triggered controls. More precisely, it was inferred for a Lyapunov function that is uniformly bounded by showing that is uniformly bounded for . However, this argument may fail without further information while the boundedness of is crucially used for applying Barbalat's lemma. The consequence of Barbalat's lemma is that which corresponds to the desired consensus result. To overcome this gap, Ma and Zhao (Inform Sci. 2018;457‐458:208‐221) put an extra condition about the boundedness of measurement error functions inside the proposed integral‐based event‐triggering protocol. In this article, we propose a new integral‐based event‐triggering protocol for bipartite consensus problems of the multi‐agent systems whose dynamics are described by general linear systems without adding the uniform boundedness of measurement error functions as (Ma Y, Zhao J. Inform Sci. 2018;457‐458:208‐221) did. Via our new integral‐based integral control strategy, we prove that the system achieves the bipartite consensus in asymptotic regime, and provide a complete solution of the freeness of both chattering and genuinely Zeno behaviors. Numerical results are provided supporting the effectiveness of the proposed controller.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3