Hydrocarbon micro‐migration and differential enrichment mechanism of shale oil in upper Cretaceous Qingshankou Formation in Songliao Basin

Author:

Guan Ziheng12,Meng Qingqiang1,Huang Qian2,Tang Xuan12,Shan Yansheng3,Liu Guangxiang1,Guo Shaobin2ORCID,Zhang Jinchuan2,Cheng Xiong2,Xiong Jinyu2

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development Beijing China

2. China University of Geosciences Beijing China

3. Oil & Gas Survey, China Geological Survey Beijing China

Abstract

Shale reservoir has strong heterogeneity in mineral composition and oil content even at a short distance in the same interval. To better understand the accumulation mechanism of shale oil and hydrocarbon migration tendency in the interval, and explore the main influencing factors of distribution. This paper employed various methods, including thin‐section observation, TOC (total organic matter (OM)) analysis, rock pyrolysis, Soxhlet extraction, group component separation, and GC–MS (gas chromatography mass spectrometry) analysis of saturated hydrocarbons. The shale oil samples were collected from an exploratory well in the Songliao Basin, and the distribution and enrichment characteristics of shale oil interlayers were analysed. The results show that the first member of Qingshankou Formation (K2qn1) could be divided into six small layers. From Q1 to Q6, the lithofacies could be divided into three types: high‐frequency laminar shale, massive shale, and bioclastic shale. The lacustrine matrix shale of K2qn1 in Songliao Basin has medium TOC, and high oil contents, OM conversion rate. The TOC ranges from 1.5 to 4.2 wt%, S1 varies between 1.4 and 4 mg/g, S2 falls within the range of 4 to 10.6 mg/g, Tmax ranges from 351 to 497°C, and the OSI varies between 57 and 115.34 mg HC/g rock. The lower part of the K2qn1, Q1–Q4, characterized by high‐frequency laminar shale, contained residual shale oil, while the upper part of the K2qn1, Q5 and Q6, characterized by bioclastic shale and massive mudstone, and are dominated by in‐situ type shale oil. The crude oil in K2qn1 is homologous, and primarily undergoes micro‐migration. The Q5–Q6 section has the highest light oil content, while other regions with notable light components are located in the middle of Q1, the upper sections of Q2, Q3, and Q4.Q1–Q4 are primarily composed of residual shale oil, whereas Q5–Q6 is primarily composed of in‐situ shale oil, and the primary micro‐migration direction of shale oil occurs laterally within Q1–Q4. The lateral migration of each section mainly occurs at the upper part of Q3 and Q4, the lower part of Q1 and Q2, the bottom of Q5, and the interface between Q6 and the second member of Qingshankou formation (K2qn2). The block mudstone retains in‐situ shale oil, especially light hydrocarbons. Within the high‐frequency laminar shale, there is strong horizontal connectivity, and lateral hydrocarbon expulsion serves as the primary mechanism for micro‐migration in Q1–Q4. This paper can provide reference values for K2qn1 Formation shale oil and the migration and differential reservoir formation of medium and high‐maturity matrix shale oil.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3