Extracted samples and in situ soil investigations to assess the effects of different land use and tillage management practices on soil organic matter composition

Author:

Masoudi Malihe1ORCID,Centeri Csaba1,Karlik Máté2,Jakab Gergely23ORCID

Affiliation:

1. Institute of Wildlife Management and Nature Conservation The Hungarian University of Agricultural and Life Sciences Gödöllő Hungary

2. Geographical Institute Research Centre for Astronomy and Earth Sciences, MTA Centre for Excellence Budapest Hungary

3. Department of Environmental and Landscape Geography ELTE Eötvös Loránd University Budapest Hungary

Abstract

AbstractThe effects of land use change on soil organic carbon (SOC) content have been investigated extensively. However, little research has been conducted on how soil organic matter (SOM) chemistry changes under different land use management practices, particularly with different soil cultivation methods. Thus, in this study, we compared the effects of various land use management practices, including six medium‐term tillage practices, namely no‐tillage (zero‐tillage), disking, shallow cultivation, deep cultivation, ploughing, and loosening, and a natural ecosystem, namely tree line, on SOM composition. The present study examined Chernozem soils during spring and autumn under varying land uses in randomised complete block designs, with four replicates at depth increments of 0–10 cm. The SOM composition was characterised using diffuse reflectance infrared Fourier transformat spectroscopy (DRIFTS) and ultraviolet–visible spectroscopy (UV‐VIS). More intensive tillage operations resulted in larger SOM composition changes. Overall, conservation tillage, namely no‐tillage, disking, shallow cultivation, and deep cultivation, SOM was more like the tree line soil than the soil under conventional tillage. Both DRIFTS and UV‐VIS revealed that tree line soil had the lowest aromaticity (15%) and, therefore, a lower decomposition rate and higher SOM recalcitrance compared with the cropland soil (27%). After observing the relationship between tillage operation and aromaticity, aromaticity increased with increasing tillage intensity. This study demonstrates that land use can alter the structure and stability of SOM compounds. We observed that afforestation is similar to conservation tillage, and results are obtained quickly (<40 years). Hence, regeneration agriculture and conservation tillage may be the superior solutions for increasing SOM, sustainable agriculture, and food security in current soil and climate conditions. In addition, DRIFTS measurements of bulk soil provided more detailed information on the quality and stability of SOM than UV‐VIS measurements.

Funder

Tempus Közalapítvány

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3