Characterizing temperature and precipitation multi‐variate biases in 12 and 2.2 km UK Climate Projections

Author:

Garry Freya K.1ORCID,Bernie Dan J.12ORCID

Affiliation:

1. Met Office Exeter UK

2. Faculty of Health Sciences University of Bristol Bristol UK

Abstract

AbstractMany impactful weather and climate events include two or more variables (like temperature or precipitation) having high or low values (e.g., hot dry summers). Understanding biases in the relationship between modelled variables is important for characterizing uncertainties in the risks associated with compound events. We present a framework for evaluating the relationships between different variables (multi‐variate bias). We illustrate our approach with UK temperature and precipitation, using HadUK‐Grid observations and two model ensembles (12 and 2.2 km horizontal resolution) of the HadGEM3 regional model used in UK Climate Projections both forced with the same driving conditions. There are distinct regional patterns in the biases of both the Pearson correlation coefficients and coefficients of linear regression between temperature and precipitation in both resolutions, for example, large areas of positive biases in the Pearson correlation coefficients across the United Kingdom in winter, and negative biases across most of England in summer. We combine the Pearson correlation coefficients and bias in the coefficient of linear regression into a combined metric and consider regions where either the bias in the coefficient of linear regression or the bias in Pearson correlation coefficient is significantly dominant over the other. By considering only days with similar North Atlantic driving conditions using Met Office Weather Patterns we can identify regions with significant differences between the two model resolutions that are attributable to the difference in model resolution and structural design. The root mean square error (RMSE) of correlation bias across the United Kingdom is reduced in the 2.2 km compared to the 12 km model data in each season except summer where it is broadly similar. For Weather Pattern 2 (North Atlantic Oscillation positive) days the RMSE for correlation coefficient and the coefficient of linear regression is twice as large than for all conditions.

Funder

UK Research and Innovation

Publisher

Wiley

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Describing future UK winter precipitation in terms of changes in local circulation patterns;Climate Dynamics;2024-03-21

2. Improved Understanding and Characterisation of Climate Hazards in the UK;Quantifying Climate Risk and Building Resilience in the UK;2023-12-23

3. What Has Been Learned About Converting Climate Hazard Data to Climate Risk Information?;Quantifying Climate Risk and Building Resilience in the UK;2023-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3