Affiliation:
1. Department of Chemical Engineering Columbia University New York New York USA
2. Chemistry Division Brookhaven National Laboratory Upton New York USA
3. Center for Functional Nanomaterials Brookhaven National Laboratory Upton New York USA
Abstract
AbstractThe interfacial structures of bimetallic‐derived catalysts play an important role in promoting the activation of reactants such as CO2. In particular, both the physical property (e.g., local bonding environment) and the electronic property (e.g., oxidation state) can evolve from their native states under different environments, such as upon reduction and during the catalytic reaction. Hence, taking the CO2 hydrogenation reaction over Rh‐based catalysts as a case study, the present work compares the interfacial structures in tuning the selectivity toward CH4 or CO. The combination of ex situ and in situ characterization reveals two representative interfacial structures: the Rh/CeOx interface formed over Rh/CeO2 is active and selective to produce CH4 (~95%) by following a formate‐mediated pathway; in comparison, the InOx/Rh interface derived after reduction is active for CO2 activation and enables a redox mechanism for the exclusive formation of CO (~100%). This work provides insights into the environment‐induced structural evolution at the metal−oxide interfaces, as well as the role of distinct interfacial active sites in tuning the selectivity of CO2 hydrogenation.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献