Reduction‐induced metal/oxide interfacial sites for selective CO2 hydrogenation

Author:

Xie Zhenhua12,Hwang Sooyeon3,Chen Jingguang G.12ORCID

Affiliation:

1. Department of Chemical Engineering Columbia University New York New York USA

2. Chemistry Division Brookhaven National Laboratory Upton New York USA

3. Center for Functional Nanomaterials Brookhaven National Laboratory Upton New York USA

Abstract

AbstractThe interfacial structures of bimetallic‐derived catalysts play an important role in promoting the activation of reactants such as CO2. In particular, both the physical property (e.g., local bonding environment) and the electronic property (e.g., oxidation state) can evolve from their native states under different environments, such as upon reduction and during the catalytic reaction. Hence, taking the CO2 hydrogenation reaction over Rh‐based catalysts as a case study, the present work compares the interfacial structures in tuning the selectivity toward CH4 or CO. The combination of ex situ and in situ characterization reveals two representative interfacial structures: the Rh/CeOx interface formed over Rh/CeO2 is active and selective to produce CH4 (~95%) by following a formate‐mediated pathway; in comparison, the InOx/Rh interface derived after reduction is active for CO2 activation and enables a redox mechanism for the exclusive formation of CO (~100%). This work provides insights into the environment‐induced structural evolution at the metal−oxide interfaces, as well as the role of distinct interfacial active sites in tuning the selectivity of CO2 hydrogenation.

Funder

Basic Energy Sciences

Publisher

Wiley

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3