Development and first implementation of a novel multi‐modality cardiac motion and dosimetry phantom for radiotherapy applications

Author:

Gregg Kenneth W.12,Ruff Chase12,Koenig Grant3,Penev Kalin I.3,Shepard Andrew1,Kreissler Grace4,Amatuzio Margo4,Owens Cameron4,Nagpal Prashant5,Glide‐Hurst Carri K.12

Affiliation:

1. Department of Human Oncology University of Wisconsin–Madison Madison Wisconsin USA

2. Department of Medical Physics University of Wisconsin–Madison Madison Wisconsin USA

3. Modus Medical Devices, Inc. (IBA QUASAR) London Ontario Canada

4. Department of Biomedical Engineering University of Wisconsin–Madison Madison Wisconsin USA

5. Department of Radiology University of Wisconsin–Madison Madison Wisconsin USA

Abstract

AbstractBackgroundCardiac applications in radiation therapy are rapidly expanding including magnetic resonance guided radiation therapy (MRgRT) for real‐time gating for targeting and avoidance near the heart or treating ventricular tachycardia (VT).PurposeThis work describes the development and implementation of a novel multi‐modality and magnetic resonance (MR)‐compatible cardiac phantom.MethodsThe patient‐informed 3D model was derived from manual contouring of a contrast‐enhanced Coronary Computed Tomography Angiography scan, exported as a Stereolithography model, then post‐processed to simulate female heart with an average volume. The model was 3D‐printed using Elastic50A to provide MR contrast to water background. Two rigid acrylic modules containing cardiac structures were designed and assembled, retrofitting to an MR‐safe programmable motor to supply cardiac and respiratory motion in superior‐inferior directions. One module contained a cavity for an ion chamber (IC), and the other was equipped with multiple interchangeable cavities for plastic scintillation detectors (PSDs). Images were acquired on a 0.35 T MR‐linac for validation of phantom geometry, motion, and simulated online treatment planning and delivery. Three motion profiles were prescribed: patient‐derived cardiac (sine waveform, 4.3 mm peak‐to‐peak, 60 beats/min), respiratory (cos4 waveform, 30 mm peak‐to‐peak, 12 breaths/min), and a superposition of cardiac (sine waveform, 4 mm peak‐to‐peak, 70 beats/min) and respiratory (cos4 waveform, 24 mm peak‐to‐peak, 12 breaths/min). The amplitude of the motion profiles was evaluated from sagittal cine images at eight frames/s with a resolution of 2.4 mm × 2.4 mm. Gated dosimetry experiments were performed using the two module configurations for calculating dose relative to stationary. A CT‐based VT treatment plan was delivered twice under cone‐beam CT guidance and cumulative stationary doses to multi‐point PSDs were evaluated.ResultsNo artifacts were observed on any images acquired during phantom operation. Phantom excursions measured 49.3 ± 25.8%/66.9 ± 14.0%, 97.0 ± 2.2%/96.4 ± 1.7%, and 90.4 ± 4.8%/89.3 ± 3.5% of prescription for cardiac, respiratory, and cardio‐respiratory motion profiles for the 2‐chamber (PSD) and 12‐substructure (IC) phantom modules respectively. In the gated experiments, the cumulative dose was <2% from expected using the IC module. Real‐time dose measured for the PSDs at 10 Hz acquisition rate demonstrated the ability to detect the dosimetric consequences of cardiac, respiratory, and cardio‐respiratory motion when sampling of different locations during a single delivery, and the stability of our phantom dosimetric results over repeated cycles for the high dose and high gradient regions. For the VT delivery, high dose PSD was <1% from expected (5–6 cGy deviation of 5.9 Gy/fraction) and high gradient/low dose regions had deviations <3.6% (6.3 cGy less than expected 1.73 Gy/fraction).ConclusionsA novel multi‐modality modular heart phantom was designed, constructed, and used for gated radiotherapy experiments on a 0.35 T MR‐linac. Our phantom was capable of mimicking cardiac, cardio‐respiratory, and respiratory motion while performing dosimetric evaluations of gated procedures using IC and PSD configurations. Time‐resolved PSDs with small sensitive volumes appear promising for low‐amplitude/high‐frequency motion and multi‐point data acquisition for advanced dosimetric capabilities. Illustrating VT planning and delivery further expands our phantom to address the unmet needs of cardiac applications in radiotherapy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3