Aromatic volatile organic compounds absorption with phenyl‐based deep eutectic solvents: A molecular thermodynamics and dynamics study

Author:

Yu Gangqiang12ORCID,Gajardo‐Parra Nicolás F.2ORCID,Chen Min1,Chen Biaohua1ORCID,Sadowski Gabriele2ORCID,Held Christoph2ORCID

Affiliation:

1. Faculty of Environment and Life Beijing University of Technology Beijing China

2. Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany

Abstract

AbstractThe suitability of phenyl‐based deep eutectic solvents (DESs) as absorbents for toluene absorption was investigated by means of thermodynamic modeling and molecular dynamics (MD). The thermodynamic models perturbed‐chain statistical associating fluid theory (PC‐SAFT) and conductor‐like screening model for real solvents (COSMO‐RS) were used to predict the vapor–liquid equilibrium of DES–toluene systems. PC‐SAFT yielded quantitative results even without using any binary fitting parameters. Among the five DESs studied in this work, [TEBAC][PhOH] consisting of triethyl benzyl ammonium chloride (TEBAC) and phenol (PhOH), was considered as the most suitable absorbent. Systems with [TEBAC][PhOH] had lowest equilibrium pressures of the considered DES–toluene mixtures, the best thermodynamic characteristics (i.e., Henry's law constant, excess enthalpy, Gibbs free energy of solvation of toluene), and the highest self‐diffusion coefficient of toluene. The molecular‐level mechanism was explored by MD simulations, indicating that [TEBAC][PhOH] has the strongest interaction of DES–toluene compared to the other DESs under study. This work provides guidance to rationally design novel DESs for efficient aromatic volatile organic compounds absorption.

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3