Aerobic oxidation of 2‐tert‐butyl phenol within gas–liquid segmented flow: Mass transfer characteristics and scale‐up

Author:

Liu Ping1ORCID,Zhang Jiawei1,Liu Kefeng2,Hu Xuesheng2,Gao Fei2,Du Le1ORCID,Zhu Jiqin1

Affiliation:

1. The State Key Laboratory of Chemical Resource Engineering College of Chemical Engineering, Beijing University of Chemical Technology Beijing People's Republic of China

2. PetroChina Petrochemical Research Institute Beijing People's Republic of China

Abstract

AbstractQuantifying the mass transfer of gas–liquid segmented flow in practical reactions is of significant for the scale‐up design. However, there is a lack of theoretical guidance to predict operational conditions to meet required the mass transfer in a selective dimension‐enlarged microreactor. Herein, the oxidation of 2‐tert‐butyl phenol (2‐TBP) was performed in a selective dimension‐enlarged capillary microreactor of 4.35 mm i.d. and optimal operation conditions were obtained. A high 2‐tert‐butyl‐1,4‐benzoquinone (2‐TBQ) yield of 73% was achieved within 6 min. Moreover, a quantitative method to assess the mass transfer of gas–liquid segmented flow in practical reaction was developed by introducing a circulation frequency, fcir, which could provide theoretical guidance to predict operating conditions for the scale‐up production. The 2‐TBQ productivity is significantly increased from 0.0061 to 0.5068 kg/h, that is, an increase of 83 times, by selective dimension enlarging from 2 mm to 4.35 mm with predicted operating conditions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3