On connectivity in random graph models with limited dependencies

Author:

Lengler Johannes1,Martinsson Anders1,Petrova Kalina1ORCID,Schnider Patrick1,Steiner Raphael1ORCID,Weber Simon1ORCID,Welzl Emo1

Affiliation:

1. Department of Computer Science ETH Zürich Zürich Switzerland

Abstract

AbstractWe consider random graph models in which the events describing the inclusion of potential edges have to be independent of each other if the corresponding edges are non‐adjacent and ask: what is the minimum probability , such that for any distribution (in this model) on graphs with vertices in which each potential edge has a marginal probability of being present at least , a graph drawn from is connected with non‐zero probability? The answer to this question is sensitive to the formalization of the independence condition. We introduce a strict hierarchy of five conditions, which give rise to at least three different functions . For each condition, we provide upper and lower bounds for . For the strongest condition, the coloring model, we show that for . In contrast, for the weakest condition, pairwise independence, we show that lies within of the threshold for completely arbitrary distributions.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Eidgenössische Technische Hochschule Zürich

Publisher

Wiley

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3