Fluid flow and mass transport in fractured media with curved fractures and varying apertures: A 3D modeling approach

Author:

Wang Luyu1ORCID,Yin Zhen‐Yu1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong China

Abstract

AbstractFractured media have been extensively studied due to their significant impact on hydraulic properties of subsurface systems. However, accurately modeling and simulating flow and transport in complex 3D fractured media still remains a challenge. For this purpose, this work aims to develop a new 3D modeling approach and investigate flow and mass transport in fractured media. First, a modeling approach is presented for generating 3D complex structures and high quality finite element grids. This approach allows for the presence of a range of complex geometries, including curved fracture, multiple fractures and the coexistence of fracture‐inclusions. The resulting models and grids are of high quality, enabling accurate simulation and analysis of complex systems. Furthermore, stress‐dependent aperture and roughness are integrated in the computational scheme using Barton–Bandis law. The Galerkin finite element method is used for numerical discretization, then pressure and concentration are calculated in a unified formulation. Later, numerical tests are performed to analyze the role of 3D fractures in flow and mass transport. Simulation results show that fractures have a larger impact on pressure distribution and flow rate compared to inclusions. Fracture roughness increases the aperture then the effective conductivity is improved as well. Curved fractures may reduce flow rate more than planar fractures due to the tortuosity effect. The variation of equivalent permeability tensor is analyzed with varying orientation, roughness, and number of fractures. The impact of stress and fracture roughness causes a variation of fracture permeability and a high pressure gradient on the fracture‐matrix interface, resulting in different patterns of concentration evolution. Overall, this investigation provides insights into the role of 3D fractures in subsurface flow and transport, with implications for various applications.

Funder

Hong Kong Polytechnic University

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3