Process parameter study and kinetic of remazol dye adsorption onto local rice husk‐based organic porous materials

Author:

Rahim Nurul Elia Aqila Abu1,Azelee Nur Izyan Wan12,Ghazali Mohd Nazlee Faisal Md1,Ismail Noor Mohd Syeqqal3,Abdul Manas Nor Hasmaliana12ORCID

Affiliation:

1. Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia

2. Institute of Bioproduct Development Universiti Teknologi Malaysia Johor Bahru Johor Malaysia

3. Environmental Preservation and Innovation Centre Negeri Sembilan Malaysia

Abstract

AbstractRemazol Brilliant Blue dye (RBB) is a harmful dye from the textile industry that can damage the environment and aquatic life. Since RBB is impossible to degrade in water by primary and secondary wastewater treatment, its removal is a challenge. An excellent treatment procedure is urgently anticipated to avoid the pollution spreading into the environment. Moreover, rice husk waste (RH) in Malaysia is abundant and generally dumped into landfills. Turning the waste into a value‐added product such as biochar as an effective adsorbent material for treating water pollutants is one of the initiatives in realizing the circular economy agenda. This study develops an organic porous material of biochar from RH and assesses the kinetic of RBB adsorption onto the rice husk biochar (RHB) in aqueous solution. The production of RHB was optimized by pyrolysis procedure at various temperatures, times, and particle sizes. The removal of RBB dye by RHB was investigated at different exposure times from 0 to 120 min under 100 rpm shaken and immersed conditions. The reduction of RBB concentrations using different RHB pyrolysis conditions has also been investigated. The dye removal efficiency by RHB increased with time and the highest removal efficiency (69.3%) was achieved by the smallest particle size of RHB which was produced at the highest pyrolysis temperature of 400°C (RHB‐400). The total pore volume and BET surface area of RHB‐400 were found to be 50.4827 m2/g and 0.00875 cm3/g, respectively. The adsorption kinetic study signifies that maximum adsorption has been completed within 90–120 min depending on the RHB conditions whereas two kinetic models such as pseudo‐first order and pseudo‐second order kinetic models were utilized to fit the experimental data and the results are more consistent with pseudo‐second order kinetic models. This study revealed that RHB can be used as adsorbent materials for dye removals, yet it is economical, environmentally friendly, and sustainable.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3