Affiliation:
1. Faculty of Urban and Infrastructure Engineering Mien Tay Construction University Vinh Long City, Vinh Long District Vietnam
2. Faculty of Chemistry University of Montreal Quebec Canada
3. Faculty of Civil Engineering Mien Tay Construction University Vinh Long City, Vinh Long District Vietnam
4. Institute of Applied Technology and Sustainable Development Nguyen Tat Thanh University Ho Chi Minh City Vietnam
Abstract
AbstractThe excessive use of antimicrobials in animal rearing and the associated environmental hazards have become a pressing issue. Animal agriculture is often viewed as a significant contributor to environmental degradation due to the residues of antimicrobials. It is a common practice to use livestock waste as a soil enhancer in farming. Despite some research into antimicrobials, there is room for more comprehensive data regarding these pollutants in animal farming environments. A handful of earlier studies have identified antimicrobials in animal waste. This research undertook the task of examining and evaluating soils amended with animal waste (from chickens, cows, and pigs) for the presence of seven specific antimicrobials. The antimicrobials under scrutiny included trimethoprim (TRI), ormethoprim (ORM), ofloxacin (OFL), norfloxacin (NOR), tetracycline (TET), chlortetracycline (CTE), and tylosin (TLS). Soil samples were collected from areas surrounding breeding farms located upstream of the Sai Gon River. These samples were then subjected to laboratory analysis, which involved solid‐phase extraction using ultrasonic waves and the application of high‐performance liquid chromatography‐tandem mass spectrometry (LCMS/MS) to identify the antimicrobials. TRI, which had the highest average concentration (2.603–91.304 μg/kg), and OFL, with the second highest average concentration (1.815–15.832 μg/kg), were detected in all soil samples amended with manure. CTE, with the third highest average concentration, was found in soils amended with cow and pig waste (1.625–15.486 μg/kg). ORM and TE, with lower average concentrations (0.595–1.318 μ and 11.537–13.569 μg/kg, respectively), were only detected in soils amended with chicken waste, while NOR was only found in soils amended with cow waste. These findings indicate that the use of antimicrobials in animal farming can negatively impact the soil ecosystem. Consequently, these results can contribute to the creation of guidelines for monitoring antimicrobial residues in agricultural ecosystems.
Subject
Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal