Designing efficient patient‐centric smart contracts for healthcare ecosystems with access control capabilities

Author:

Kalita Kausthav Pratim12ORCID,Boro Debojit2,Kumar Bhattacharyya Dhruba2

Affiliation:

1. Department of Computer Science and Engineering Assam Don Bosco University Guwahati Assam India

2. Department of Computer Science and Engineering Tezpur University Tezpur Assam India

Abstract

AbstractElectronic medical records are a patient's digital asset that enhances the information available to doctors for tracking their patients' health. When this information is stored in a secure environment, health examination reports can serve as a dependable repository for thorough observation of a patient's well‐being. However, it is crucial for the owner to have control over access to these repositories. In this scenario, a blockchain ecosystem with appropriate access control mechanisms can help create a distributed and decentralized storage platform to ensure the safety and security of data. Developing cost‐effective smart contracts and creating clear design diagrams to represent them are essential for establishing such an ecosystem. This paper introduces a smart contract for the Ethereum blockchain that allows an owner to maintain control over their data. The paper presents a diagram for visually representing the modules within our smart contract, providing readers with a clearer understanding of the access control techniques utilized in implementing our strategies. Our smart contract offers clinicians a valuable means of accessing historical data to promptly evaluate a patient's health in emergency situations. We showcase its efficacy by illustrating how it streamlines insurance claims, where it verifies the patient's coverage and automatically authorizes medical expense payments. Lastly, a study is presented to showcase an effective method of storing the ingested data within the Ethereum network. The suggested approach allows restrictions on data visibility based on the viewer's accessibility through identity‐based access control achieved using additional structures in smart contracts. These structures store filtered records accessible to users based on their viewing privileges. The simulated test bed results support the efficiency of using smart contracts with additional structures in terms of gas consumption when compared to those that use a single structure for read and write operations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3