Affiliation:
1. Ming Hsieh Department of Electrical and Computer Engineering University of Southern California Los Angeles California USA
2. Siemens Medical Solutions USA Los Angeles California USA
Abstract
AbstractPurposeBreath‐held fat‐suppressed volumetric T1‐weighted MRI is an important and widely‐used technique for evaluating the abdomen. Both fat‐saturation and Dixon‐based fat‐suppression methods are used at conventional field strengths; however, both have challenges at lower field strengths (<1.5T) due to insufficient fat suppression and/or inadequate resolution. Specifically, at lower field strengths, fat saturation often fails due to the short T1 of lipid; and Cartesian Dixon imaging provides poor spatial resolution due to the need for a long ∆TE, due to the smaller ∆f between water and lipid. The purpose of this work is to demonstrate a new approach capable of simultaneously achieving excellent fat suppression and high spatial resolution on a 0.55T whole‐body system.MethodsWe applied 3D stack‐of‐spirals Dixon imaging at 0.55T, with compensation of concomitant field phase during reconstruction. The spiral readouts make efficient use of the requisite ∆TE. We compared this with 3D Cartesian Dixon imaging. Experiments were performed in 2 healthy and 10 elevated liver fat volunteers.ResultsStack‐of‐spirals Dixon imaging at 0.55T makes excellent use of the required ∆TE, provided high SNR efficiency and finer spatial resolution (1.7 × 1.7 × 5 mm3) compared Cartesian Dixon (3.5 × 3.5 × 5 mm3), within a 17‐s breath‐hold. We observed successful fat suppression, and improved definition of structures such as the liver, kidneys, and bowel.ConclusionWe demonstrate that high‐resolution single breath‐hold volumetric abdominal T1‐weighted imaging is feasible at 0.55T using spiral sampling and concomitant field correction. This is an attractive alternative to existing Cartesian‐based methods, as it simultaneously provides high‐resolution and excellent fat‐suppression.
Funder
National Science Foundation of Sri Lanka