A simplified and masking‐free doping process for interdigitated back contact solar cells using an atmospheric pressure chemical vapor deposition borosilicate glass / phosphosilicate glass layer stack for laser doping followed by a high temperature step

Author:

Heilig Matthias1,Wurmbrand Daniel1,Hahn Giso1,Terheiden Barbara1

Affiliation:

1. Department of Physics University of Konstanz Constance 78457 Germany

Abstract

AbstractIn this paper a simplified approach for the generation of laterally p‐ and n‐doped structures applicable for cost‐effective production of interdigitated back contact (IBC) solar cells is presented. We use a stack of doping glasses deposited by atmospheric pressure chemical vapor deposition (APCVD), consisting of borosilicate glass (BSG) and phosphosilicate glass (PSG) on Czochralski‐grown (Cz) silicon substrates. A laser process creates the p‐doped regions by local liquid phase diffusion of boron from the BSG layer into the underlying molten Cz‐Si substrate. Simultaneously, the BSG‐PSG stack is removed by laser ablation. In a subsequent high‐temperature step, phosphorus diffuses from the remaining PSG‐BSG layer into the crystalline silicon substrate under inert gas atmosphere, creating complementary to laser doped areas n+‐doped regions. By the use of APCVD, phosphorus and boron contents of the doping glasses can be adjusted freely to vary the resulting p‐ and n‐doped profiles. A higher boron content in the BSG layer enhances the diffusion of phosphorus through the BSG, especially at lower diffusion temperatures. The resulting doping profiles are characterized using electrochemical capacitance‐voltage measurements and the resulting sheet resistances using the four‐point probe method. The amount of minority dopant contamination in n‐ and p‐doped regions is investigated by secondary ion mass spectrometry. Furthermore, transfer length method (TLM)‐measurements indicate contactability of the generated doped regions.

Funder

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3