Diverse Functions of Parkin in Midbrain Dopaminergic Neurons

Author:

Song Pingping1ORCID,Krainc Dimitri1

Affiliation:

1. Ken and Ruth Davee Department of Neurology Northwestern University Feinberg School of Medicine Chicago Illinois USA

Abstract

AbstractParkinson's disease (PD) is characterized by preferential degeneration of midbrain dopaminergic neurons that contributes to its typical clinical manifestation. Mutations in the parkin gene (PARK2) represent a relatively common genetic cause of early onset PD. Parkin has been implicated in PINK1‐dependent mitochondrial quantity control by targeting dysfunctional mitochondria to lysosomes via mitophagy. Recent evidence suggests that parkin can be activated in PINK1‐independent manner to regulate synaptic function in human dopaminergic neurons. Neuronal activity triggers CaMKII‐mediated activation of parkin and its recruitment to synaptic vesicles where parkin promotes binding of synaptojanin‐1 to endophilin A1 and facilitates vesicle endocytosis. In PD patient neurons, disruption of this pathway on loss of parkin leads to defective recycling of synaptic vesicles and accumulation of toxic oxidized dopamine that at least in part explains preferential vulnerability of midbrain dopaminergic neurons. These findings suggest a convergent mechanism for PD‐linked mutations in parkin, synaptojanin‐1, and endophilin A1 and highlight synaptic dysfunction as an early pathogenic event in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3