Effect of graphene nanoplatelets and nano zinc oxide on gas barrier and antibacterial properties of thermoplastic nanocomposites

Author:

Ghosh Suman Kumar1,Ganguly Soumya Sarathi2,Paul Sangit1ORCID,Ghosh Trisita1,Das Amit Kumar2,Das Narayan Ch.1

Affiliation:

1. Rubber Technology Centre Indian Institute of Technology Kharagpur West Bengal India

2. Department of Bioscience and Biotechnology Indian Institute of Technology Kharagpur West Bengal India

Abstract

AbstractGraphene‐loaded thermoplastic nanocomposite films must be evaluated for antibacterial activity, mechanical, and barrier properties before being utilized as food packaging. Herein, economically feasible linear low‐density polyethylene (LLDPE)‐based flexible packaging materials were developed via the melt compounding technique at 170°C temperature by taking advantage of both graphene nanoplatelets (GNP) and nano zinc oxide (ZnO) fillers. Morphological studies reveal that in composites loaded with GNP/ZnO hybrid fillers, ZnO nanoparticles form a network‐like structure throughout the polymer matrix. Simultaneously, GNPs are uniformly dispersed. The inclusion of hybrid nanofiller considerably reduces both the oxygen transmission rate and the water vapor transmission rate (WVTR) in LLDPE nanocomposites. A maximum decrease of 36% and 67%, respectively, in both oxygen transmission rate and WVTR is observed for 3 wt% of hybrid filler loading in a thermoplastic matrix containing 1 wt% of nano ZnO. The antibacterial efficacy of the derived nanocomposite films is obvious against gram‐positive (Bacillus subtilis) and gram‐negative (Escherichia coli) bacterial strains. These nanocomposite films have the potential to be successfully utilized as flexible packaging materials owing to their improved thermal, barrier, and antibacterial effectiveness.Highlights GNP/ZnO was used as a hybrid reinforcing filler in the LLDPE matrix. ZnO nanoparticles establish a network‐like morphology. LLDPE nanocomposite films exhibited excellent antibacterial activity. Oxygen and water vapor barrier properties were significantly improved. The thermoplastic composite films could be used as food packaging materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3