Development and application of a multiple reaction monitoring method for the simultaneous quantification of sodium channels Nav1.1, Nav1.2, and Nav1.6 in solubilized membrane proteins from stable HEK293 cell lines, rodents, and human brain tissues

Author:

Kwan Rainbow1,Das Prerna1,Gerrebos Neelan1,Li Jenny1,Wang Xin Yin1ORCID,DeBoer Gina1,Emnacen‐Pankhurst Vanessa1,Lin Sophia1,Feng Raymond1,Goodchild Sam1,Sojo Luis E.1ORCID

Affiliation:

1. Xenon Pharmaceuticals Inc. Burnaby British Columbia Canada

Abstract

RationaleNav1.1, 1.2, and 1.6 are transmembrane proteins acting as voltage‐gated sodium channels implicated in various forms of epilepsy. There is a need for knowing their actual concentration in target tissues during drug development.MethodsUnique peptides for Nav1.1, Nav1.2, and Nav1.6 were selected as quantotropic peptides for each protein and used for their quantification in membranes from stably transfected HEK293 cells and rodent and human brain samples using ultra‐high‐performance liquid chromatography–electrospray ionization tandem mass spectrometry.ResultsNav 1.1, 1.2, and 1.6 protein expressions in three stably individually transfected HEK293 cell lines were found to be 2.1 ± 0.2, 6.4 ± 1.2, and 4.0 ± 0.6 fmol/μg membrane protein, respectively. In brains, Nav1.2 showed the highest expression, with approximately three times higher (P < 0.003) in rodents than in humans at 3.05 ± 0.57, with 3.35 ± 0.56 in mouse and rat brains and 1.09 ± 0.27 fmol/μg in human brain. Both Nav1.1 and 1.6 expressions were much lower in the brains, with approximately 40% less expression in human Nav1.1 than rodent Nav1.1 at 0.49 ± 0.1 (mouse), 0.43 ± 0.3 (rat), and 0.28 ± 0.04 (humans); whereas Nav1.6 had approximately 60% less expression in humans than rodents at 0.27 ± 0.09 (mouse), 0.26 ± 0.06 (rat), and 0.11 ± 0.02 (humans) fmol/μg membrane proteins.ConclusionsMultiple reaction monitoring was used to quantify sodium channels Nav1.1, 1.2, and 1.6 expressed in stably transfected HEK293 cells and brain tissues from mice, rats, and humans. We found significant differences in the expression of these channels in mouse, rat, and human brains. Nav expression ranking among the three species was Nav1.2 ≫ Nav1.1 > Nav1.6, with the human brain expressing much lower concentrations overall compared to rodent brain.

Publisher

Wiley

Subject

Organic Chemistry,Spectroscopy,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3