Affiliation:
1. Simula Metropolitan Center for Digital Engineering Oslo Norway
2. Oslo Metropolitan University Oslo Norway
3. Swammerdam Institute for Life Sciences University of Amsterdam Amsterdam Netherlands
Abstract
AbstractComputational phenotyping allows for unsupervised discovery of subgroups of patients as well as corresponding co‐occurring medical conditions from electronic health records (EHR). Typically, EHR data contains demographic information, diagnoses and laboratory results. Discovering (novel) phenotypes has the potential to be of prognostic and therapeutic value. Providing medical practitioners with transparent and interpretable results is an important requirement and an essential part for advancing precision medicine. Low‐rank data approximation methods such as matrix (e.g., nonnegative matrix factorization) and tensor decompositions (e.g., CANDECOMP/PARAFAC) have demonstrated that they can provide such transparent and interpretable insights. Recent developments have adapted low‐rank data approximation methods by incorporating different constraints and regularizations that facilitate interpretability further. In addition, they offer solutions for common challenges within EHR data such as high dimensionality, data sparsity and incompleteness. Especially extracting temporal phenotypes from longitudinal EHR has received much attention in recent years. In this paper, we provide a comprehensive review of low‐rank approximation‐based approaches for computational phenotyping. The existing literature is categorized into temporal versus static phenotyping approaches based on matrix versus tensor decompositions. Furthermore, we outline different approaches for the validation of phenotypes, that is, the assessment of clinical significance.This article is categorized under:
Algorithmic Development > Structure Discovery
Fundamental Concepts of Data and Knowledge > Explainable AI
Technologies > Machine Learning
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献