Affiliation:
1. Electrical and Computer Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
2. Faculty of Engineering University of Porto Porto Portugal
3. Electrical and Computer Engineering INESC TEC Porto Portugal
Abstract
AbstractExplanations of a model's biases or predictions are essential to medical image analysis. Yet, explainable machine learning approaches for medical image analysis are challenged by needs to preserve privacy of patient data, and by current trends in deep learning to use unsustainably large models and large datasets. We propose DeepFixCX for explainable and privacy‐preserving medical image compression that is nimble and performant. We contribute a review of the field and a conceptual framework for simultaneous privacy and explainability via tools of compression. DeepFixCX compresses images without learning by removing or obscuring spatial and edge information. DeepFixCX is ante‐hoc explainable and gives privatized post hoc explanations of spatial and edge bias without accessing the original image. DeepFixCX privatizes images to prevent image reconstruction and mitigate patient re‐identification. DeepFixCX is nimble. Compression can occur on a laptop CPU or GPU to compress and privatize 1700 images per second of size 320 × 320. DeepFixCX enables use of low memory MLP classifiers for vision data; permitting small performance loss gives end‐to‐end MLP performance over 70× faster and batch size over 100× larger. DeepFixCX consistently improves predictive classification performance of a Deep Neural Network (DNN) by 0.02 AUC ROC on Glaucoma and Cervix Type detection datasets, and can improve multi‐label chest x‐ray classification performance in seven of 10 tested settings. In all three datasets, compression to less than 5% of original number of pixels gives matching or improved performance. Our main novelty is to define an explainability versus privacy problem and address it with lossy compression.This article is categorized under:
Fundamental Concepts of Data and Knowledge > Explainable AI
Commercial, Legal, and Ethical Issues > Security and Privacy
Fundamental Concepts of Data and Knowledge > Big Data Mining
Funder
Carnegie Mellon Portugal
Fundação para a Ciência e a Tecnologia
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献