A feature selection for video quality of experience modeling: A systematic literature review

Author:

Skaka ‐ Čekić Fatima12ORCID,Baraković Husić Jasmina12ORCID

Affiliation:

1. Faculty of Electrical Engineering, Department of Telecommunications University of Sarajevo Sarajevo Bosnia and Herzegovina

2. BH Telecom, Joint Stock Company Sarajevo Bosnia and Herzegovina

Abstract

AbstractQuality of Experience (QoE) multidimensional concept is the key for successful delivery of multimedia services. Higher user requirements for new experiences such as augmented reality, virtual reality, and future 6G services set higher requirements for QoE. A more complex QoE space requires the use of data mining methods in order to process the data for better QoE prediction. The increased dimensionality of the QoE space becomes a limiting factor for achieving the desired QoE prediction accuracy. Existing studies considering the QoE multidimensional concept with approaches that overcome the challenge of increased QoE space dimensionality are of great importance for future research. Accordingly, this article aims to review the applications of Feature Selection (FS) methods in video QoE modeling. It provides a comprehensive overview of the existing studies with the categorization and review of applied FS methods with reference to the data collection and data modeling steps. The analysis included 71 studies which provides overview of the FS methods applications in video QoE modeling depending on the input Influence Factor (IF) dimension sizes, type of IFs, QoE prediction methods used and QoE evaluation type. Our review revealed the advantages of using FS methods in video QoE modeling, frequency of application of FS methods with potential of applying more FS methods in a series or a parallel, gives an overview of the achieved dimensionality reduction degree for different methods, and provides insights in opportunities for researchers for applying FS methods on complex multidimensional QoE space.This article is categorized under: Technologies > Data Preprocessing Algorithmic Development > Multimedia

Publisher

Wiley

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3