Predicting ecological outcomes using fuzzy interaction webs

Author:

Pearson Dean E.12,Clark‐Wolf T. J.3ORCID

Affiliation:

1. U.S. Department of Agriculture Forest Service Rocky Mountain Research Station Missoula Montana USA

2. Division of Biological Sciences University of Montana Missoula Montana USA

3. Department of Biology, Center for Ecosystem Sentinels University of Washington Seattle Washington USA

Abstract

AbstractThe past 100 years of empirical research in ecology have generated tremendous knowledge about the component interactions that structure ecological communities. Yet, we still lack the ability to reassemble these puzzle pieces to predict community responses to perturbations, a challenge that grows increasingly urgent given rapid global change. We summarize key advances in community ecology that have set the stage for modeling ecological systems and briefly review the evolution of ecological modeling efforts to identify critical hurdles to progress. We find that while Robert May demonstrated that quantitative models could theoretically predict community interactions nearly 50 years ago, in practice, we still lack the ability to predict ecological outcomes with reasonable accuracy for three reasons: (1) quantitative models require precise data for parameterization (often unavailable) and have restrictive assumptions that are rarely met; (2) estimating interaction strengths for all network components is extremely challenging; and (3) determining which species are essential to include in models is difficult (model structure uncertainty). We propose that fuzzy interaction webs (FIW), borrowed from the social sciences, hold the potential to overcome these modeling shortfalls by integrating quantitative and qualitative data (e.g., categorical data, natural history information, expert opinion) for generating reasonably accurate qualitative predictions sufficient for addressing many ecological questions. We outline recent advances developed for addressing model structure uncertainty, and we present a case study to illustrate how FIWs can be applied for estimating community interaction strengths and predicting complex ecological outcomes in a multitrophic (plants, herbivores, predators), multi‐interaction‐type (competition, predation, facilitation, omnivory) grassland ecosystem. We argue that incorporating FIWs into ecological modeling could significantly advance empirical and theoretical ecology.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3