Selection of the most informative wavenumbers to improve prediction accuracy of milk fatty acid profile based on milk mid‐infrared spectra data

Author:

Lou Wenqi1ORCID,Brito Luiz F.2,Zhao Xiuxin3,Bonfatti Valentina4,Li Jianbin3,Wang Yachun1

Affiliation:

1. State Key Laboratory of Animal Biotech Breeding National Engineering Laboratory of Animal Breeding Key Laboratory of Animal Genetics, Breeding and Reproduction MARA College of Animal Science and Technology China Agricultural University Beijing China

2. Department of Animal Sciences Purdue University West Lafayette Indiana USA

3. Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences Jinan China

4. Department of Comparative Biomedicine and Food Science University of Padova Padova Italy

Abstract

AbstractMilk mid‐infrared (MIR) spectra have been shown to provide valuable information on a wide range of traits to be used in dairy cattle breeding programs. Selecting the most informative variables from complex data can improve the prediction accuracy and model robustness and, consequently, the interpretability of MIR spectra. Thus, we aimed to investigate the prediction performance of feature selection methods based on MIR spectra data, using the milk fatty acid (FA) profile as an example to illustrate the evaluated procedure. Data of MIR spectra, milk test‐day records, and reference FA concentrations of 155 first‐parity Holstein cows were used in the analyses. Four models comprising different explanatory variables and three feature selection methods were evaluated. The results indicated that competitive adaptive reweighted sampling (CARS) method can effectively select the most informative variables from the MIR spectra, resulting in higher prediction accuracies than other variable selection approaches. The model including selected MIR spectra and cow information variables yielded the best FA profile predictions based on partial least square regression. C8:0, C10:0, C14:1, C17:0 isomers, C18:1, C18:1 isomer, medium‐chain FA, unsaturation FA, monounsaturated FA, and polyunsaturated FA presented accuracies based on the determination coefficient ranging from 0.66 to 0.85 in internal validation and from 0.65 to 0.84 in external validation. The most related wavenumbers to 35 FAs were found within 1003 to 1145 cm−1. Generally, using CARS and cow information improved predictions of FAs based on MIR spectra in Chinese Holstein dairy cows. Additional validation studies should be conducted as larger datasets become available.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Earmarked Fund for China Agriculture Research System

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3