Socio‐techno‐economic‐environmental sizing of hybrid renewable energy system using metaheuristic optimization approaches

Author:

Kushwaha Pawan Kumar12ORCID,Bhattacharjee Chayan1

Affiliation:

1. Department of Electrical Engineering National Institute of Technology Silchar Silchar India

2. Department of Electrical and Electronics Engineering Galgotias College of Engineering and Technology Greator Noida India

Abstract

AbstractElectricity supply reliability in an electricity distribution network is majorly affected due to unexpected power failures and power cuts. A hybrid renewable energy system (HRES) with the optimal size of renewable energy sources can substantially improve power reliability. Therefore, this article develops an objective function incorporating socio‐techno‐economic‐environmental (STEE) factors for HRES optimal sizing to supply reliable power to a rural village. The factors considered in the objective function are namely social (employment generation factor, human progress index, and land cost), technical (excess energy factor, renewable energy portion, and loss of power supply probability), economical (total net present cost, cost of energy, and annualized cost of system), and environmental (emission cost). In this article, for the first time, marine predators algorithm (MPA) based metaheuristic optimizer is devised to address the sizing optimization problem of HRES. Three HRES configurations, having different arrangements of diesel generator (DG), biogas generator (BG), battery (BAT), wind turbine (WT), and photovoltaic (PV), are examined utilizing MPA, particle swarm optimization (PSO), salp swarm algorithm (SSA), and genetic algorithm (GA) for optimal configuration. Due to the lowest value of economical and environmental factors and the highest value of the social factor, the PV‐WT‐BAT‐BG‐DG configuration is optimal compared to other investigated configurations with MPA. Comparing the four optimizers, MPA has the best STEE factor values, as well as stronger convergence, greater ability to escape from local minima, and higher ability to approach the global optimum. Additionally, by contrasting it with the PSO result for the three HRES configurations, the MPA result quality is confirmed. Furthermore, the cost of energy (0.1799 $/kWh) of the optimal configuration is less than the latest addressed in the literature.

Publisher

Wiley

Reference76 articles.

1. Development of optimal integrated renewable energy model with battery storage for a remote Indian area

2. CEA.All India installed capacity (in MW) of power stations. Cent electricity authority Minist Power.2020Accessed Jan 02 2022.http://www.cea.nic.in/reports/monthly/installed_capacity_2016/installed_capacity-03.pdf

3. GOI.Power sector at a glance all India. Gov India Minist Power.2020Accessed Jan 02 2022.https://powermin.nic.in/en/content/power-sector-glance-all-india

4. Feasibility assessment of Anchor-Business-Community model for off-grid rural electrification in India

5. Techno-economic assessment of hybrid CSP-biogas power plants

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3