Prediction of CO 2 ‐Oil Minimum Miscibility Pressure Using Soft Computing Methods
Author:
Affiliation:
1. Tarbiat Modares UniversityDepartment of Petroleum EngineeringFaculty of Chemical Engineering Tehran Iran
2. Tarbiat Modares UniversityFaculty of Chemical Engineering P.O. Box 14115-143 Tehran Iran
Publisher
Wiley
Subject
Industrial and Manufacturing Engineering,General Chemical Engineering,General Chemistry
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ceat.201900411
Reference76 articles.
1. Application of hybrid neural particle swarm optimization algorithm for prediction of MMP
2. Application of mixed kernels function (MKF) based support vector regression model (SVR) for CO2 – Reservoir oil minimum miscibility pressure prediction
3. Prediction of minimum miscibility pressure in oil reservoirs using a modified SAFT equation of state
4. CO2–oil minimum miscibility pressure model for impure and pure CO2 streams
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantification of factors affecting fault sealing by using machine learning: Shuangtaizi fault anticline, southern margin of the Liaohe Western Depression, Northeastern China;Marine and Petroleum Geology;2024-10
2. Utilizing Artificial Intelligence Techniques for Modeling Minimum Miscibility Pressure in Carbon Capture and Utilization Processes: A Comprehensive Review and Applications;Energy & Fuels;2024-07-25
3. Development of multiple explicit data-driven models for accurate prediction of CO2 minimum miscibility pressure;Chemical Engineering Research and Design;2024-05
4. A Comprehensive Summary of the Application of Machine Learning Techniques for CO2-Enhanced Oil Recovery Projects;Machine Learning and Knowledge Extraction;2024-04-29
5. Unveiling CO2 capture in tailorable green neoteric solvents: An ensemble learning approach informed by quantum chemistry;Journal of Environmental Management;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3