A direct prediction method for wind power ramp events considering the class imbalanced problem

Author:

Ren Guorui1ORCID,Wan Jie2ORCID,Wang Yanjia3,Yao Kun2,Fu Junfeng2,Yu Jilai2

Affiliation:

1. School of Control and Computer Engineering North China Electric Power University Beijing China

2. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin China

3. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China

Abstract

AbstractPredicting wind power ramp events directly based on the historical ramp event time series has drawn increasing attention recently. But the class imbalance problem of the ramp event time series significantly affects the prediction accuracy of ramp events. In the present study, a layer oversampling (LOS) method is proposed considering the relation characteristics of wind power amplitudes and the occurrence frequency of wind power ramp events. Meanwhile, a hybrid sampling method of error bootstrap‐LOS (EB‐LOS) is proposed by combining LOS with the EB oversampling method. After balancing the samples of the ramp and nonramp events by using different sampling methods, the backpropagation neural network (BPNN), and the long short‐term memory (LSTM) methods are employed to directly predict ramp events based on historical data collected from eight wind farms. Comparison results proved that the proposed EB‐LOS method achieves the best prediction performance with an average recall of 0.8196 when using the BPNN model to directly predict ramp events. The best prediction performance of the EB‐LOS method is also proved by using the LSTM model to directly predict ramp events.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3