Three RNA helicase DDX genes are essential for the development and oocyte maturation in Laodelphax striatellus

Author:

Ma Qing‐Lu1,Zhang Chuan‐Xi1ORCID,Chen Jian‐Ping1,Li Jun‐Min1ORCID,Zhang Yan1ORCID

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology Ningbo University Ningbo China

Abstract

AbstractBackgroundDEAD‐box protein (DDX) is a member of the DDX RNA helicase family that exerts multiple functions in RNA metabolism, cell cycle, tumorigenesis, signal pathway, and fertility, particularly in mammals. Nevertheless, the biological functions of DDXs in insects have not been fully resolved and attracted increasing attention these years. Laodelphax striatellus (Hemiptera) is a notorious rice pest through feeding on rice sap and transmitting plant viruses. In this study, we aim to elucidate the functional characterization of DDXs in L. striatellus, and to exploit potential target genes for the development of pest control strategies.ResultsIn this study, we characterized the expression patterns of LsDDX6, LsDDX47, and LsDDX51 in planthoppers and analyzed their conserved motifs. These genes were found to be expressed in all tissues and developmental stages examined, with significantly higher transcript levels observed in the ovary. Knockdown of LsDDX6, LsDDX47, and LsDDX51 resulted in an obvious lethal phenotype in nymphs and abnormal ovarian development in adults. Furthermore, a total of 27 DDXs were identified in L. striatellus, and most DDXs were highly expressed in ovary and structure analysis result revealed that all of the DDXs possessed nine motifs that were unique to the DDX family.ConclusionThe three DDX RNA helicases (LsDDX6, LsDDX47, and LsDDX51) are essential for both survivorship and reproduction in L. striatellus. Considering a total number of 27 DDXs identified in L. striatellus, they might serve as promising candidates for application in RNAi‐based control of this destructive pest. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3