Study on the evolutionary characteristics of strain energy on crack propagation in coal and rock under bending load

Author:

Zhang Yueying1,Zhang Dongxiao1ORCID,Gong Xufei1,Zhang Wei2ORCID,Zhang Lei3

Affiliation:

1. College of Energy and Mining Engineering Shandong University of Science and Technology Qingdao China

2. School of Architecture and Civil Engineering Liaocheng University Liaocheng China

3. Huaneng Coal Technology Research Co., Ltd. Beijing China

Abstract

AbstractThe failure of coal mine overburden is mainly caused by fractures under bending loads. The energy evolution characteristics of coal and rock fractures are closely related to coal mine disasters such as rock burst. To obtain the characteristics of energy release and accumulation of coal and rock under bending load, three‐point bending tests of coal, mudstone, and sandstone were carried out respectively. The strength characteristics and fracture propagation process of coal and rock under bending load were studied. The strain energy evolution rules of coal and rock were calculated and obtained. The fracture mechanism of coal and rock was discussed by analyzing the critical strain energy release rate. The results show that the fracture complexity of sandstone and mudstone is greater than that of coal. The microstructure and its directivity in coal and rock indirectly affect their fracture characteristics through the elastic modulus characteristics. The distribution of parameters such as peak load of fracture, fracture energy, and crack length of coal and mudstone samples is discrete, while that of sandstone samples is concentrated. The deformation energy density of coal and rock basically shows a linear increase trend at the prepeak stage. The deformation energy density evolution characteristics at the postpeak stage are mainly affected by the load drop. It is important to establish the internal relationship between the meso structural characteristics and macro mechanical properties for solving engineering problems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3