Organic light‐emitting diode behaviors of some synthesized platinum(II)‐based complexes

Author:

Üngördü Ayhan1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science Sivas Cumhuriyet University Sivas Turkey

Abstract

AbstractOrganic light‐emitting light diodes (OLEDs) have been increasingly used in displays, replacing liquid‐crystal displays (LCD) and light‐emitting diodes (LEDs) panels. The increase in commercial use of OLED has led to the search for OLED with high performance. For that reason, the OLED properties of monomers and dimers of some synthesized platinum(II)‐based complexes were estimated by using different computational chemistry tools with different codes. The electron/hole reorganization energies, the adiabatic/vertical ionization potentials, the adiabatic/vertical electron affinities, the chemical hardness values, the dipole moments, the frontier orbital shapes/energy levels, the energy gaps, the emission wavelengths, spin‐orbit matrix elements, the rates of reverse intersystem crossing and intersystem crossing of the investigated complexes were determined. From the theoretically obtained data, it was found that Pt(hppz)2 and Pt(fppz)2 complexes can be used as electron transfer material. Furthermore, it was stated that Pt(f2bipz)(bpy) is both electron‐blocking layer and hole blocking layer materials. Moreover, it was noted that that PtOEP complex can be utilized as a good electron injection layer and hole injection layer material. Addition to these, it was emphasized that that Pt(f2bipz)(bpy) can be considered as a good candidate for near infrared organic light emitting diodes and thermal activated delayed fluorescent organic light emitting diodes. In light of computational chemistry, it should be expected that the study will provide a great contribution to studies related to organic light emitting diodes.

Funder

Sivas Cumhuriyet Üniversitesi

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3