Computational study of van der Waals interaction at the sub‐nanometer scale and its influence on the molecular behavior under confinement conditions in graphene‐2D h‐BN heterostructure

Author:

Iyakutti Kombiah1ORCID,Surya V. J.1,Lakshmi Iyakutti2,Rajeswarapalanichamy R.3,Kawazoe Y.14

Affiliation:

1. Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur Tamil Nadu India

2. School of Computing Sciences Hindustan Institute of Technology and Sciences Padur Tamilnadu India

3. Department of Physics N.M.S.S.V.N. College Madurai Tamil Nadu India

4. New Industry Creation Hatchery Center Tohoku University Aramaki Sendai Japan

Abstract

AbstractThe atomistic features of the van der Waals interaction between graphene and 2D h‐BN layer are investigated with and without doping using density functional theory. It is computationally shown, how different types of 2D materials can form heterojunctions with each other without the need for close lattice matching if the atomic species are neighbors in the periodic table. H2, N2, and O2 are introduced as the dopants separately to investigate the van der Waals interaction at the sub‐nanometer scale and its influence on the molecules and interlayer coupling. The geometrical forms and formation energies of differently bonded molecules and atoms immersed in van der Waals forces in the heterostructure are predicted accurately. The spatial dependence of the van der Waals energy between graphene and h‐BN and its effect on the confined molecule/atoms is well brought out in the present investigation. The weak van der Waals forces between graphene and h‐BN do introduce minor changes at the nanoscale but maintain the original band structure which is dominated by graphene. The present graphene and 2D h‐BN van der Waals heterostructure, with enhanced features, offers a unique opportunity to fabricate new materials with different properties. They will become the building blocks in engineering new functional materials.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3