Affiliation:
1. Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
2. Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
Abstract
Abstract
Radiation therapy to anatomic regions, including the head and neck, chest wall, and extremities, can produce radiation-induced fibrosis (RIF). To elucidate the cellular and molecular mechanism(s) involved in RIF, female C57BL/6J mice were irradiated to the right flank to 35 Gy in single fraction using 6 Mv electrons. Radiation fibrosis was detected by day 14, was increased by day 28, and confirmed by Masson's trichrome histological staining for collagen. Biopsied tissue at day 14 showed an increase in expression of fibrosis-related genes including transforming growth factor-β (TGF-β) and collagens 1–6. A single adipose-derived stem cell (ASC) injection on day 28 at the irradiated site decreased by day 40: epithelial thickness, collagen deposition, and significantly improved limb excursion compared with irradiated controls. Noncontact transwell coculture of ASCs above a monolayer of irradiated human foreskin fibroblasts downregulated fibrosis-related genes TGF-β, connective tissue growth factor, interleukin-1, NF-kB, tumor necrosis factor, and collagens 1–6. Hepatocyte growth factor (HGF) secreted by ASCs was identified as a novel mechanism by which ASCs exert antifibrotic effects by downregulating fibrotic gene expression in irradiated cells and recruiting bone marrow cells to the irradiated site. In conclusion, these data indicate a mechanistic role of HGF secreted by ASCs in reducing RIF. Stem Cells 2019;37:791–802
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献