Carpal allometry of African apes among mammals

Author:

Goldstein Deanna M.1ORCID,Sylvester Adam D.2ORCID

Affiliation:

1. Department of Anatomical Sciences Renaissance School of Medicine at Stony Brook University Stony Brook New York USA

2. Center for Functional Anatomy and Evolution The Johns Hopkins University School of Medicine Baltimore Maryland USA

Abstract

AbstractObjectivesMorphological variation in African ape carpals has been used to support the idea that Pan and Gorilla evolved knuckle‐walking independently. Little work, however, has focused on the effect of body mass on carpal morphology. Here, we compare carpal allometry in Pan and Gorilla to that of other quadrupedal mammals with similar body mass differences. If allometric trends in Pan and Gorilla carpals mirror those of other mammals with similar body mass variation, then body mass differences may provide a more parsimonious explanation for African ape carpal variation than the independent evolution of knuckle‐walking.Materials and MethodsThree linear measurements were collected on the capitate, hamate, lunate, and scaphoid (or scapholunate) of 39 quadrupedal species from six mammalian families/subfamilies. Relationships between linear measurements and estimated body mass were analyzed using reduced major axis regression. Slopes were compared to 0.33 for isometry.ResultsWithin Hominidae, higher body mass taxa (Gorilla) have relatively anteroposteriorly wider, mediolaterally wider, and/or proximodistally shorter capitates, hamates, and scaphoids than low body mass taxa (Pan). These allometric relationships are mirrored in most, but not all, mammalian families/subfamilies included in the analysis.ConclusionsWithin most mammalian families/subfamilies, carpals of high body mass taxa are proximodistally shorter, anteroposteriorly wider, and mediolaterally wider than those of low body mass taxa. These distinctions may be caused by the need to accommodate relatively higher forelimb loading associated with greater body mass. Because these trends occur within multiple mammalian families/subfamilies, some carpal variation in Pan and Gorilla is consistent with body mass differences.

Funder

Leakey Foundation

Publisher

Wiley

Subject

Paleontology,Archeology,Genetics,Anthropology,Anatomy,Epidemiology

Reference152 articles.

1. Locomotion of Animals

2. Legs and locomotion of carnivora;Alexander R. M.;Symposia of the Zoological Society of London,1993

3. Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3