Synergistic effect of aluminum sulfate and triethanolamine on the hydration of metakaolin blended cement

Author:

Zhang Liheng1,Lu Zichen1,Liu Zhiwei1,Sun Zhenping1

Affiliation:

1. Tongji University Shanghai China

Abstract

AbstractShotcrete is regarded as an indispensable component in the construction of tunnels and mines, which can stabilize the tunnel wall and prevent groundwater infiltration. Along with the massive railway construction in China's mountainous region, it is unavoidable to build more tunnels, and then the used amount of shotcrete increases dramatically. Calcined clay blended cement is one promising low‐carbon cementitious material and metakaolin (MK) is the main reactive component in calcined clay. Considering the high demand for shotcrete and the urgently needed carbon neutrality in China, it is necessary to contain more MK in the cement of shotcrete.Beside the cement, accelerator is also necessary for the production of shotcrete. Aluminum sulfate (AS) and triethanolamine (TEA) are two representative components in the alkali‐free liquid accelerator. However, limited researches were conducted regarding the synergistic effect of AS and TEA on the setting and hardening performance of the metakaolin blended cement (OPC‐MK).Hence, in order to clarify the effect of TEA and AS on the hydration of OPC‐MK, different dosages of TEA were added to AS solution and their effects on setting performance, compressive strength and hydration kinetics of OPC‐MK were investigated. It is found that, with the presence of both AS and TEA, a high dosage of TEA facilitates the reaction of the aluminate phase while greatly retards the silicate reaction. More importantly, TEA can promote the dissolution and pozzolanic reaction of MK. Thereby a dense structure can be formed and the compressive strength of pastes at 28 d is enhanced. At last, the interactions between TEA, AS and OPC‐MK is thoroughly analyzed, which could provide a theoretical basis for the wide application of low‐carbon cement in shotcrete.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3