Mechanically robust, corrosion and impact resistance polyimide nanofiber/epoxy composite by mechanochemical fabrication

Author:

Zhao Kangbo1,Cai Rui2,Guo Shuang3,Yuan Haochen1,Fu Yuxin1,Araby Sherif4,Meng Qingshi1ORCID

Affiliation:

1. College of Aerospace Engineering Shenyang Aerospace University Shenyang China

2. School of Mechanical, Aerospace and Automotive Engineering Coventry University Coventry UK

3. Northern Theatre General Hospital Shenyang China

4. Department of Mechanical and Aerospace Engineering School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan

Abstract

AbstractThis study aimed to explore the application of a mechanochemical method for effectively integrating polyimide nanofibers, which are widely recognized for their outstanding thermal and mechanical properties, into an epoxy resin matrix. The researchers observed an 87.5% reduction in the diameter of polyimide nanofibers after mechanical treatment. The dispersion, compatibility, and interface between the nanofibers and epoxy matrix were analyzed using molecular dynamics simulations and scanning electron microscopy. The addition of polyimide nanofibers significantly increased the binding energy of the composite, resulting in a 52.8% improvement. Moreover, compared to pure epoxy resin, the inclusion of modified polyimide nanofibers led to a 21.9% increase in tensile strength and an 18.8% increase in impact strength. The PI/epoxy composite also exhibited a 15.6% increase in tensile strength and a 16.4% increase in impact strength. Additionally, electrochemical corrosion analysis showed that the PI/epoxy composite had excellent corrosion resistance. In conclusion, due to the exceptional mechanical properties and strong interfacial adhesion of polyimide nanofibers, the PI/epoxy resin composite demonstrated significant overall performance improvement compared to pure epoxy resin.Highlights Mechanochemical method to disperse polyimide fiber, shorter and finer fibers were obtained Improve performance by adding small amounts Microscopic analysis of composites by Materials Studio, PIENFs efficiently improved the interaction on the phase interface Experiments have verified that PIENFs could make the mechanical properties and corrosion resistance

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3