Cycloaddition reactions via “on water” protocol reactions: A density functional theory study

Author:

López‐Sosa L.1,Calaminici P.1ORCID

Affiliation:

1. Departamento de Química, CINVESTAV Av. Instituto Politécnico Nacional 2508 México Mexico

Abstract

AbstractIn this work, the reactions of quadricyclane with dimethyl azodicarboxylate (DMAD) and of quadricyclane with diethyl azodicarboxylate (DEAD) in gas phase and in water environments were studied by a first‐principles investigation within the framework of auxiliary density functional theory (ADFT). For these type of organic reactions is known that water is required to accelerate them. Since the reason of why this occur is still unknown, this work aims to gain insight into this reaction mechanism. For this investigation, the generalized gradient approximation as well as a hybrid functional were employed. The obtained optimized structures for the reactants, of the products and of the transition states are reported, together with the corresponding frequency analysis results and the reaction profiles. Along the proposed concerted reaction mechanism, a critical points search of the electron density and a charge analysis were performed. The calculated potential energy barriers of these reactions in gas phase and in water environments are compared. In agreement with experiment, the obtained results indicate that both reactions occur faster in water than in gas phase. This study shows that there is a change in the polarity of the two most important carbon atoms of the formed compounds along the reactions and that the decrease of the activation energy barrier which occurs in liquid phase in these reactions is because the structures of the main transition states are stabilized by the water environment. Therefore, the here obtained results demonstrate the important role played by the water‐molecule framework into the activation energy barrier and structures of the molecules that participate in the DMAD and DEAD cycloaddition reactions.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3