Plasma versus serum for extracellular vesicle (EV) isolation: A duel for reproducibility and accuracy for CNS‐originating EVs biomarker analysis

Author:

Taha Hash Brown1

Affiliation:

1. Department of Integrative Biology & Physiology University of California Los Angeles Los Angeles California USA

Abstract

AbstractBlood‐derived extracellular vesicles (EVs) are a popular source of biomarkers for central nervous system (CNS) diseases, but inconsistencies in isolation and analysis hinder their clinical translation. This review summarizes recent studies that investigate the impact of different anticoagulated plasma and serum on the yield, purity, and molecular content of EVs. Specifically, the studies compare ethylenediaminetetraacetic acid (EDTA), citrate, heparin plasma, and serum and highlight the risk of contamination from platelet‐derived EVs. Here, I offer practical guidelines for standardizing EV isolation and analysis, recommending the use of plasma anticoagulated with acid‐citrate‐dextrose (ACD) or citrate followed by EDTA and heparin, subgroup analyses for samples from different biobank repositories, and avoiding serum and plasma‐to‐serum transformation. Other factors like illness, age, gender, meal timing, exercise, circadian timing, and arm pressure during blood draw can alter EV signatures. Yet, how these variables interact with different anticoagulated plasma or serum samples is unclear, necessitating further research. Furthermore, whether the changes are dependent on the isolation or quantification methodology remains an area of investigation. Importantly, the perspective emphasizes the need for consistency in experimental methodologies to improve the reproducibility and clinical applicability of CNS‐originating EV biomarker studies. The proposed guidelines, along with ongoing efforts to standardize blood sample handling and collection, may facilitate the development of more reliable and informative CNS‐originating EV biomarkers for diagnosis, prognosis, and treatment monitoring of CNS diseases.

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3