Altered dynamic functional network connectivity and topological organization variance in patients with white matter hyperintensities

Author:

Huang Chaojuan1ORCID,Zhou Xia1,Ren Mengmeng1,Zhang Wei1,Wan Ke1,Yin Jiabin1,Li Mingxu1,Li Zhiwei1,Zhu Xiaoqun1,Sun Zhongwu1ORCID

Affiliation:

1. Department of Neurology The First Affiliated Hospital of Anhui Medical University Hefei China

Abstract

AbstractWhite matter hyperintensities (WMHs) of presumed vascular origin are important imaging biomarkers of cerebral small vessel disease (CSVD). Previous studies have verified abnormal functional brain networks in CSVD. However, most of these studies rely on static functional connectivity, and only a few focus on the varying severity of the WMHs. Hence, our study primarily explored the disrupted dynamic functional network connectivity (dFNC) and topological organization variance in patients with WMHs. This study included 38 patients with moderate WMHs, 47 with severe WMHs, and 68 healthy controls (HCs). Ten independent components were chosen using independent component analysis based on resting‐state functional magnetic resonance imaging. The dFNC of each participant was estimated using sliding windows and k‐means clustering. We identified three reproducible dFNC states. Among them, patients with WMHs had a significantly higher occurrence in the sparsely connected State 1, but a lower occurrence and shorter duration in the positive and stronger connected State 3. Regarding topological organization variance, patients with WMHs showed higher variance in local efficiency but not global efficiency compared to HCs. Among the WMH subgroups, patients with severe WMHs showed similar but more obvious alterations than those with moderate WMHs. These altered network characteristics indicated an imbalance between the functional segregation and integration of brain networks, which was correlated with global cognition, memory, executive functions, and visuospatial abilities. Our study confirmed aberrant dFNC state metrics and topological organization variance in patients with moderate‐to‐severe WMHs; thus, it might provide a new pathway for exploring the pathogenesis of cognitive impairment.

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3