First principle studies on structural, elastic, electronic, optical, and thermoelectric properties of new perovskite TlTaO3: For renewable energy applications

Author:

Lakra Sangeeta1,Mukherjee S. K.1ORCID

Affiliation:

1. Department of Physics Birla Institute of Technology Ranchi India

Abstract

AbstractThe structural, optoelectronics, and transport properties of TlTaO3 compounds were determined utilizing the full potential augmented plane wave approach using first‐principle method. We have considered the generalized gradient approximation for structural optimization and modified Becke–Johnson for electronic properties. The electronic properties reveal that the studied TlTaO3 possesses direct bandgap of magnitude 1.52 eV. Between 0 and 12 eV, optical spectra calculations are made, taking into account the real and imaginary parts of the dielectric function, refractive index, and loss function. The transport properties are estimated considering Boltzmann transport theory. The Seebeck coefficient, electrical conductivity, thermal conductivity, and power factor are all assessed using the Boltzmann transport theory. The optimized thermoelectric response of the examined TlTaO3 is produced by the improved carrier mobility, which also improves the thermoelectric efficiency of the TlTaO3. The obtained results will act as a theoretical road map for upcoming experimental and commercial TlTaO3 applications.

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3