Unraveling the effect of aromaticity for the dynamics of excited states of single benzene fluorophores

Author:

Filatov Michael12ORCID,Mironov Vladimir3ORCID,Kraka Elfi2ORCID

Affiliation:

1. Center for Multidimensional Carbon Materials Institute for Basic Science (IBS) Ulsan Republic of Korea

2. Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry Southern Methodist University Dallas Texas USA

3. Terra Quantum AG St. Gallen Switzerland

Abstract

AbstractThe photophysical properties of a series of recently synthesized single benzene fluorophores were investigated using ensemble density functional theory calculations. The energetic stability of the ground and excited state species were counterposed against the aromaticity index derived from local vibrational modes. It was found that the large Stokes shift of the fluorophores (up to ca. 5800 cm) originates from the effect of electron donating and electron withdrawing substituents rather than ‐delocalization and related (anti‐)aromaticity. On the basis of nonadiabatic molecular dynamics simulations, the absence of fluorescence from one of the regioisomers was explained by the occurrence of easily accessible S/S conical intersections below the vertical excitation energy level. It is demonstrated in the manuscript that the analysis of local mode force constants and the related aromaticity index represent a useful tool for the characterization of ‐delocalization effects in ‐conjugated compounds.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3