Affiliation:
1. Department of Automatic Control and Systems Engineering University of Sheffield Sheffield UK
2. Department of Geography and Lincoln Climate Research Group, College of Health and Science University of Lincoln Lincoln UK
Abstract
AbstractDynamical seasonal forecast models are improving with time but tend to underestimate the amplitude of atmospheric circulation variability and to have lower skill in predicting summer variability than in winter. Here, we construct Nonlinear AutoRegressive Moving Average models with eXogenous inputs (NARMAX) to develop the analysis of drivers of North Atlantic atmospheric circulation and jet‐stream variability, focusing on the East Atlantic (EA) and Scandinavian (SCA) patterns as well as the North Atlantic Oscillation (NAO) index. New time series of these indices are developed from empirical orthogonal function (EOF) analysis. Geopotential height data from the ERA5 reanalysis are used to generate the EOFs. Sets of predictors with known associations with these drivers are developed and used to formulate a sliding‐window NARMAX model. This model demonstrates a high degree of predictive accuracy, as indicated by its average correlation coefficients over the testing period (2006–2021): 0.78 for NAO, 0.83 for EA and 0.68 for SCA. In comparison, the SEAS5 and GloSea5 dynamical forecast models exhibit lower correlations with observed circulation changes: for NAO, the correlation coefficients are 0.51 for SEAS5 and 0.34 for GloSea5, for EA they are 0.15 and 0.09, respectively, and for SCA, they are 0.28 and 0.24, respectively. Comparison of NARMAX predictions with forecasts and hindcasts from the SEAS5 and GloSea5 models highlights areas where NARMAX can be used to help improve seasonal forecast skill and inform the development of dynamical models, especially in the case of summer.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献