Arnold diffusion in Hamiltonian systems on infinite lattices

Author:

Giuliani Filippo1,Guardia Marcel23

Affiliation:

1. Dipartimento di Matematica ‐ Politecnico di Milano Milano Italy

2. Departament de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain

3. Centre de Recerca Matemàtica Barcelona Spain

Abstract

AbstractWe consider a system of infinitely many penduli on an m‐dimensional lattice with a weak coupling. For any prescribed path in the lattice, for suitable couplings, we construct orbits for this Hamiltonian system of infinite degrees of freedom which transfer energy between nearby penduli along the path. We allow the weak coupling to be next‐to‐nearest neighbor or long range as long as it is strongly decaying. The transfer of energy is given by an Arnold diffusion mechanism which relies on the original V. I Arnold approach: to construct a sequence of hyperbolic invariant quasi‐periodic tori with transverse heteroclinic orbits. We implement this approach in an infinite dimensional setting, both in the space of bounded ‐sequences and in spaces of decaying ‐sequences. Key steps in the proof are an invariant manifold theory for hyperbolic tori and a Lambda Lemma for infinite dimensional coupled map lattices with decaying interaction.

Funder

Horizon 2020

Institució Catalana de Recerca i Estudis Avançats

Agencia Estatal de Investigación

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

Reference66 articles.

1. Instability of dynamical systems with several degrees of freedom;Arnold V.;Sov. Math. Doklady,1964

2. Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems

3. On Metastability in FPU

4. R.Berenguel The parametrisation method for invariant manifolds of tori in skew‐product lattices and an entire transcendental family with a persistent siegel disk PhD Thesis supervised by Fontich E. University of Barcelona 2015.

5. Invariant Objects on Lattice Systems with Decaying Interactions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3