Acrylamide‐induced autophagy‐lysosomal pathway dysfunction contributing to neurotoxicity through targeting transcription factor EB

Author:

Yang Liuqing12,Dong Li1,Zhang Lujia1,Li Daotong1,Luo Yinghua1,Chen Fang1ORCID

Affiliation:

1. College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education China Agricultural University Beijing China

2. Henan Natural Products Utilization and Functional Food Development Engineering Research Center Nanyang Institute of Technology Nanyang China

Abstract

AbstractAutophagy‐lysosomal pathway (ALP), a lysosome‐mediated self‐renewal process, is crucial for cell survival and death. Acrylamide (AA) is a neurotoxic compound produced during food thermal processing, and the mechanism underlying AA‐induced neurotoxicity remains elusive. In this study, we explored whether dysregulated ALP was involved in AA‐induced neurotoxicity and the underlying mechanism. We first evaluated the toxic effects of AA on the activation of apoptosis and NLRP3 pathway in human glioma U251 cells. We found that AA‐induced autophagy activation with the accumulation of an autophagy substrate P62, which implies the occurrence of autophagy‐lysosomal disorders. By using autophagy agonist PP242 and siRNA interfering ATG5, we demonstrated that ALP dysregulation contributed to AA‐induced apoptosis and NLRP3 inflammasome pathway activation. In addition, AA triggered ALP dysfunction by decreasing the expression of transcription factor EB (TFEB), and TFEB overexpression restored the lysosomal‐associated proteins and protected against AA‐induced apoptosis and inflammasome activation. Moreover, the autophagy agonist rapamycin restored AA‐induced ALP dysfunction by upregulating TFEB and prevented neurotoxicity. Overall, our study provides novel insights into the role of disrupted ALP in AA‐induced neurotoxicity and highlights that TFEB can be developed as a promising intervention target against AA‐induced neurotoxicity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3