Elevated temperatures shift flower head height distributions and seed dispersal patterns in two invasive thistle species

Author:

Drees Trevor H.1ORCID,Shea Katriona1ORCID

Affiliation:

1. Department of Biology and IGDP in Ecology The Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractClimate change may significantly alter how organisms disperse, with implications for population spread and species management. Wind‐dispersed plants have emerged as a useful study system for investigating how climate change affects dispersal, although studies modeling wind dispersal often assume propagules are released from a single point on an individual. This simplifying assumption, while useful, may misestimate dispersal. Here, we investigate the effects of climate change on dispersal distances and spread rates, examining how these quantities shift when accounting for all points of seed release on an individual. Using the wind‐dispersed invasive thistles Carduus nutans and Carduus acanthoides, we quantify temperature‐driven shifts in the distribution of flower head heights using a passive warming field experiment, and estimate how these shifts affect dispersal using the Wald analytical long‐distance (WALD) model; for C. nutans, we use existing demographic data to simulate how these shifts affect population spread rates. We also compare dispersal distances for both warmed and ambient temperature plants, considering the entire distribution of flower head heights versus the common assumption of point‐source seed release at the maximum height. For experimentally grown individuals, an ~0.6°C higher growing temperature increased mean and maximum flower head height by 14.1 cm (15.0%) and 14.0 cm (13.2%), respectively, in C. nutans and by 21.2 cm (26.6%) and 31.8 cm (36.7%), respectively, in C. acanthoides. Seeds from warmed individuals were more likely to exceed a given dispersal distance than those from their unwarmed counterparts; warmed C. nutans and C. acanthoides seeds were on average 1.36 and 1.71 times as likely, respectively, to travel 10 m or more in dispersal simulations, with this disparity increasing at longer dispersal distances. For C. nutans, increased growing temperatures boosted simulated rates of population spread by 42.2%, while assuming dispersal from a maximum height point source rather than the true distribution of flower head heights increased simulated spread by up to 28.5%. Our results not only demonstrate faster population spread under increased temperatures, but also have substantial implications for modeling such spread, as the common simplifying assumption of dispersal from a single maximum height source may substantially overestimate spread rates.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3