Revealing flow structures in horizontal pipe and biomass combustor using computational fluid dynamics simulation

Author:

Steven Soen12,Hernowo Pandit3,Sasongko Nugroho A.14ORCID,Soedarsono Adik A.5,Wardani Maya L. D.1,Otivriyanti Geby1,Soekotjo Ernie S. A.1,Hidayatullah Ibnu M.6,Sophiana Intan C.7,Culsum Neng T. U.8,Fajri Imam M.2,Pasymi Pasymi9,Bindar Yazid210ORCID

Affiliation:

1. Research Center for Sustainable Production System and Life Cycle Assessment National Research and Innovation Agency (BRIN), KST BJ Habibie South Tangerang Banten Indonesia

2. Biomass Technology Workshop, Faculty of Industrial Technology Institut Teknologi Bandung Sumedang Indonesia

3. Department of Chemical Engineering Universitas Bhayangkara Jakarta Raya South Jakarta West Java Indonesia

4. Energy Security Graduate Program Universitas Pertahanan Republik Indonesia Tajur West Java Indonesia

5. Research Center For Process and Manufacturing Industry Technology National Research and Innovation Agency (BRIN), KST BJ Habibie South Tangerang Banten Indonesia

6. Research Center of Biomass Valorization, Faculty of Engineering Universitas Indonesia Depok Indonesia

7. Department of Chemical Engineering, Faculty of Engineering Universitas Indonesia Depok Indonesia

8. Research Centre for Energy Conversion and Conservation National Research and Innovation Agency (BRIN), KST BJ Habibie South Tangerang Banten Indonesia

9. Department of Chemical Engineering Universitas Bung Hatta Padang Indonesia

10. Department of Chemical Engineering, Faculty of Industrial Technology Institut Teknologi Bandung Bandung Indonesia

Abstract

AbstractComputational fluid dynamics (CFD) is a powerful tool to provide information on detailed turbulent flow in unit processes. For that reason, this study intends to reveal the flow structures in the horizontal pipe and biomass combustor. The simulation was aided by ANSYS Fluent employing standard ‐ model. The results show that a greater Reynolds number generates more turbulence. The pressure drop inside the pipe is also found steeper for small pipe diameters following Fanning's correlation. The fully developed flow for the laminar regime is found in locations where the ratio of entrance length to pipe diameter complies with Hagen–Poiseuille's rule. The sucking phenomenon in jet flow is also similar to the working principle of ejector. For the biomass combustor, the average combustion temperature is 356–696°C, and the maximum flame temperature is 1587–1697°C. Subsequently, air initially flows through the burner area and then moves to the outlet when enters the combustor chamber. Not so for particle flow, the particle experiences sedimentation in the burner area and then falls as it enters the combustor chamber. This study also convinces that secondary air supply can produce more circulating effects in the combustor.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3