A feasibility study of dosimetry for breast cancer radiotherapy based on body surface changes

Author:

Deng Yongjin1,Qiu Minmin1,Zhong Jiajian1,Xiao Zhenhua1,Bao Yong1,Huang Botian1

Affiliation:

1. The First Affiliated Hospital Sun Yat‐sen University Guangzhou Guangdong China

Abstract

AbstractBackgroundThe requirement for precise and effective delivery of the actual dose to the patient grows along with the complexity of breast cancer radiotherapy. Dosimetry during treatment has become a crucial component of guaranteeing the efficacy and security.PurposeTo propose a dosimetry method during breast cancer radiotherapy based on body surface changes.MethodsA total of 29 left breast cancer radiotherapy cases were retroactively retrieved from an earlier database for analysis. Non‐rigid image registration and dose recalculation of the planning computed tomography (CT) referring to the Cone‐beam computed tomography were performed to obtain dose changes. The study used 3D point cloud feature extraction to characterize body surface changes. Based on the correlation proof, a mapping model is developed between body surface changes and dose changes using neural network framework. The MSE metrics, the Euclidean distances of feature points and the 3D gamma pass rate metric were used to assess the prediction accuracy.ResultsA strong correlation exist between body surface changes and dose changes (first canonical correlation coefficient = 0.950). For the dose deformation field and dose amplitude difference in the test set, the MSE of the predicted and actual values were 0.136 pixels and 0.229 cGy, respectively. After deforming the planning dose into a deformed one, the feature points’ Euclidean distance between it and the recalculated dose changes from 9.267 ± 1.879 mm to 0.456 ± 0.374 mm. The 3D gamma pass rate of 90% or higher for the 2 mm/2% criteria were achieved by 80.8% of all cases, with a minimum pass rate of 75.9% and a maximum pass rate of 99.6%. Pass rate for the 3 mm/2% criteria ranged from 87.8% to 99.8%, with 92.3% of the cases having a pass rate of 90% or higher.ConclusionsThis study provides a dosimetry method that is non‐invasive, real‐time, and requires no additional dose for breast cancer radiotherapy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3