ENO1 contributes to the gemcitabine resistance of pancreatic cancer through the YAP1 signaling pathway

Author:

Ma Hongqin1,Kong Lulu2,Liu Li1,Du Yusheng1,Zhu Xinguo3,Wang Ji1,Zhao Wenxing1

Affiliation:

1. Department of General Surgery The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China

2. Department of Endocrinology The Affiliated Hospital of Xuzhou Medical University Xuzhou Jiangsu China

3. Department of General Surgery The First Affiliated Hospital of Soochow University Suzhou Jiangsu China

Abstract

AbstractPancreatic cancer (PC), a leading cause of cancer‐related deaths, has a 5‐year survival rate of approximately 10%. α‐Enolase (ENO1) is a junction channel protein involved in tumor cell apoptosis and chemoresistance. However, the role of ENO1 in PC remains unclear. The expression and prognosis of ENO1 levels were determined in PC using public databases based on The Cancer Genome Atlas (TCGA) data sets. Cell viability, half maximal inhibitory concentration (IC50), autophagy, apoptosis, and autophagy markers were examined using cell counting kit‐8 (CCK‐8), transmission electron microscope, flow cytometry assays, and immunoblot, respectively. Using the Gene Expression Omnibus (GEO) and TCGA data sets, we found that ENO1 was significantly enriched in PC tumor tissues, and high expression levels of ENO1 were associated with an unfavorable prognosis. Whereas ENO1 silencing suppressed proliferation, autophagy, and induced cell apoptosis in PC cells, and inhibited tumor growth in vivo. Mechanistically, knockdown of ENO1 enhanced cellular cytotoxicity of gemcitabine (GEM), as well as reducing the expression of yes‐associated protein 1 (YAP1), a major downstream effector of the Hippo pathway in vitro. YAP1 promoted autophagy and protected PC cells from GEM‐induced apoptotic cell death. Furthermore, YAP1 overexpression attenuated the inhibition effects of ENO1 silencing. Our results suggest that ENO1 overexpression promotes cell growth and tumor progression by increasing the expression of YAP1 in PC. Further studies are required to understand the detailed mechanisms between ENO1 and YAP1 in PC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3